Week 5
MATH 33A
TA: Jerry Luo
jerryluo8@math.ucla.edu
Website: math.ucla.edu/~jerryluo8
Office Hours: Thursday 1PM-2PM, MS 2344
SMC hours: Tuesday 1-2PM, MS 3974
2.3.60 Find all 3×3 lower triangular matrices A such that $A^{3}=0$ (ie. zero matrix).
2.3.29 For which values of k is the following matrix invertible?

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & k \\
1 & 2 & k^{2}
\end{array}\right]
$$

2.4.78 Find A for the linear transformation T such that $T\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{lll}7 & 5 & 3\end{array}\right]$ and $T\left[\begin{array}{l}2 \\ 5\end{array}\right]=$ $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
3.1.38 Let A be a square matrix. What is the relationship between $\operatorname{ker}(A), \operatorname{ker}\left(A^{2}\right), \operatorname{ker}\left(A^{3}\right), \cdots$ (ie. are they equal, is one contained in another, etc.)? How about $\operatorname{Im}(A), \operatorname{Im}\left(A^{2}\right), \cdots$?

